

Residual Gas Analyzers XT Series

Products from ExTorr Inc. - Pirani, Ion Gauge, Quadrupole - All Included

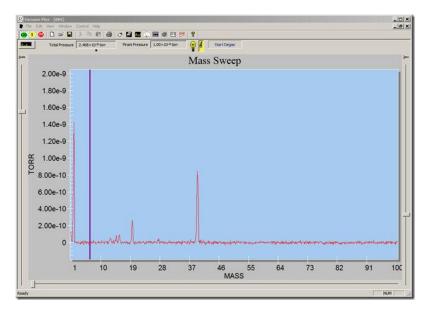
The Extorr XT residual gas analyzer is a quadrupole mass spectrometer complete with a built-in Pirani gauge and Ion gauge. It is an essential measuring device which may be used in any vacuum system. The Extorr XT residual gas analyzer (RGA) models come in 100, 200 and 300 amu packages. All RGA models attach to a single 2 3/4 inch flange. Each package has automatic start-up and shut down and will constantly monitor from atmospheric pressure to ultra high vacuum. The built-in Pirani gauge and ion gauge constantly monitor total pressure and regulate and protect the RGA. These functions are seamlessly integrated into the Extorr software package.

Part Number	Picture	Description
XT100	AFFEFFFF	Extorr 100 AMU Residual Gas Analyzer with Vacuum Plus Software
XT100M	AFARANS O	Extorr 100 AMU Residual Gas Analyzer with both Electron Multiplier and Faraday cup. Including Vacuum Plus Software
ХТ200	AFFEFFFF	Extorr 200 AMU Residual Gas Analyzer with Vacuum Plus Software
ХТ200М	AFFERRAR OF	Extorr 200 AMU Residual Gas Analyzer with both Electron Multiplier and Faraday cup. Including Vacuum Plus Software
ХТ300	ATTACANA O	Extorr 300 AMU Residual Gas Analyzer with Vacuum Plus Software
ХТ300М	AFARAGAS O	Extorr 300 AMU Residual Gas Analyzer with both Electron Multiplier and Faraday cup. Including Vacuum Plus Software

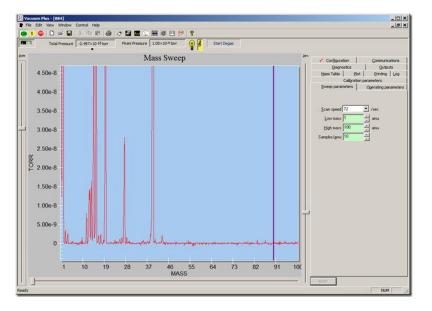
Note on Extorr XT RGA:

The standard XT100 gives detection limits below 1E-11 torr. The electron multiplier does give detection limits below 1E-13 Torr.

If you get down into the UHV range, like 10-9 Torr, you can still see the main constituents, for example:


Here is a RGA in a small chamber with a getter that has been baked and evacuated.

You can see the hydrogen and a small amount of methane at mass 2, 15, 16 from the getter.


At 20 and 40 you can see Ar++ and Ar+, that are not pumped well by the getter.

This scan will take several minutes, 500 samples at 10/second.

You can barely see the CO peak at 28 amu, but this is an exceptionally clean system.

Here is the same scan with the electron multiplier on with a gain of 1000. Now the CO (28) peak is easily visible along with He, HD, CO, CO2, H2O etc. This scan only takes a few seconds.

Hint: In a clean system, there is not much above 100 amu, but if you have unknown contaminants, you may want to go to 200 or 300 amu.

Extorr XT Series Residual Gas Analyzers

The Extorr XT systems are ideal for gas analysis, leak detection and vacuum processing applications. These reliable, easy to use RGAs are available with 100, 200, and 300 amu Mass ranges and have a partial pressure detection limit of 5×10^{-14} Torr with the optional electron multiplier. The included Pirani gauge allows the entire pump down process, from Atmosphere to UHV, to be monitored with a single instrument. Intelligent filament start up design keeps the filament off until the pressure is low enough for safe operation. Unlike other designs, Extorr's filament, ionizer and electron multiplier can be replaced by the user. The included VacuumPlus software package operates in Windows 2000, XP, 7, 8, or 10 and communicates with the RGA Electronics Command and Control Unit (CCU) using RS-232C or USB.

Compact Rugged Design

A Pirani gauge, a Bayard / Alpert (B/A) Ion gauge, and a Quadrupole mass analyzer are contained on a single 2.75" Conflat® flange. The compact CCU contains all of the RGA electronics. It is powered by the included 24 VDC supply and is easily removed from the probe for high temperature bake outs.

Long-Life Dual Filaments

Dual thoria coated iridium filaments are used for electron emission. The filaments are protected from over pressure by both the Pirani gauge and the B/A Ion gauge to ensure minimum down time. If a filament does burn out, the second filament will allow for normal operation until the filaments are replaced. Extorr offers inexpensive replacement filaments and ionizers that can be changed by the user in a matter of minutes.

Ultra-Sensitive Detection

The XT Series RGAs feature a standard Faraday cup detection system allowing partial pressure measurements from 10^{-4} Torr to 5 x 10^{-12} Torr. With the optional electron multiplier, the partial pressure sensitivity is extended to 5 x 10^{-14} Torr.

Extorr's novel electrometer measures ion currents from 10^{-6} to 10^{-15} amps in a single scan. This huge dynamic range means that very large and very small signals may be measured at the same time.

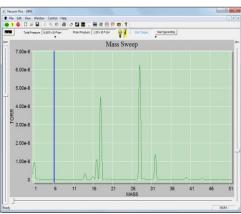
Ionizer Degas

The built in degassing function cleans the ionizer by heating its surfaces using electron bombardment. This lowers the ionizer's contribution to background chemical noise and also helps to restore reduced sensitivity caused by contamination. The VacuumPlus software has a timer that automatically ends the degas cycle after 10 minutes.

Extorr VacuumPlus Software

All Extorr RGA systems come standard with the VacuumPlus real time Windows software package. An intuitive graphical user interface makes system setup and data logging quick and easy. The display graph can be set to linear or log format and the data can be scaled using slider bars or axis limit values. The intensity units can be set to Torr, Pascal, or Ion Current. The appearance of the graph can be customized by changing the colors of the background and plot lines and the Grid Lines may be turned on and off. For further analysis, Data Logging files can be saved for easy transfer into spread sheets or other programs. The data logging files are a CSV format that contains plain text ASCII character fields. Data may be saved in a single file or in multiple files. The multiple file mode also has several options to determine when each individual file is created and saved. Graphic images can be saved in a file or copied to the clipboard for importing directly into other windows programs.

VacuumPlus allows for complete control of mass scale tuning, sensitivity calibration, ionizer setup and electron multiplier gain adjustment.

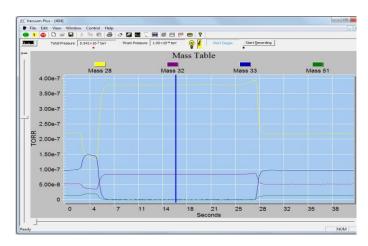

All RGA settings may be saved in a configuration file. Separate configurations can be created and saved for leak checking or other special test methods and then recalled to repeat the test in the future.

Software updates are available on the Extorr website, www.extorr.com, at no cost to the user.

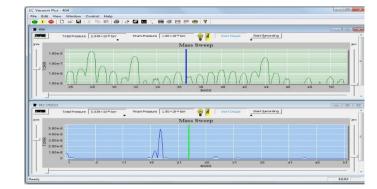
Analog Sweep Mode

The fundamental mode of any RGA is the analog mass sweep. The system may be set to scan from a start mass to an end mass within the range of the RGA. The scan speed and number of data samples per amu may be changed for the application. The partial pressure versus mass data can be viewed on the graph in real time or saved to a data logging file for additional analysis.

mu
mu

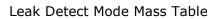

Sweep Parameters Tab

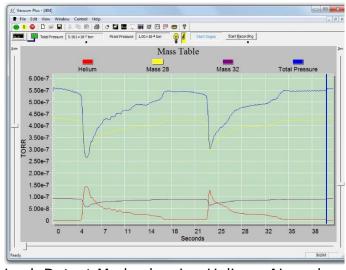
Partial Pressure vs. Mass Graph



Trend Mode

The peak intensities of up to 16 ions of interest may be followed as a function of time. A strip chart of the selected masses can be viewed on the graph or saved to a data logging file for additional analysis. Axis scaling and zoom controls are active even while data is being acquired.




Trend Mode Pressure vs. Time

Multiple RGA Operation

Mass Table Samples 600 <u>A</u>dd <u>C</u>lear udio Dutput (Selected Channel) 🔽 Disable Enabled Status Audio Description Dwell 4 Helium 3.5 ms Yes 3.5 ms 28 Yes No 3.5 ms Yes No

Leak Detect Mode showing Helium, Air and Total Pressure

Multiple Head Operation

VacuumPlus supports multiple head operation when more than one RGA is needed. Up to 9 CCUs can be controlled in a single window.

Leak Detect Mode

In the vacuum leak detect mode, a particular gas is monitored over time. Helium is the most common leak detect gas, but any other gas may be used.

The intensity trace of the leak detection gas can be viewed in real time on the graph and an audio tone that changes pitch with the intensity may be enabled.

Data Logging

Data files can be saved in a Comma Separated Values (CSV) format for easy transfer to other programs .The CSV file contains plain text ASCII character fields for the Date and Time, the Mass number, and the Intensity. Data can be saved to a single file or in multiple files. The creation options for multiple files include Once per scan, On the hour, At midnight, or After N scans.

The data logging files can be saved in any local or shared network folder and the CSV files may be viewed or modified in any text editor.

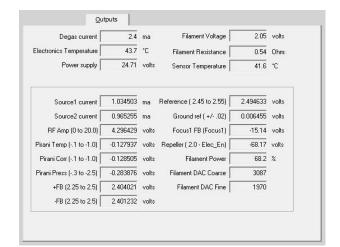
Although the XT Series is designed for reliable operation, useful diagnostic information is

available at the click of the mouse. The Outputs

filament voltage, emission current, electronics

temperature, and much more. This information

will quickly tell you of a filament problem or


tab shows real-time measurements of the

	Record Data
C No file	
C To one file (Enter file name)	
C:\RgaDataFiles\RgaTrendData\RgaT	rendData5.csv
 To multiple files (Enter the directory national) 	me)
C:\RgaDataFiles\RgaTrendData	
Creation options	
Once per scan	
C On the hour	
C At midnight	
C After N sweeps N = 5	
Data File Recording ON 🔲 Unchec	r 1
Apply	

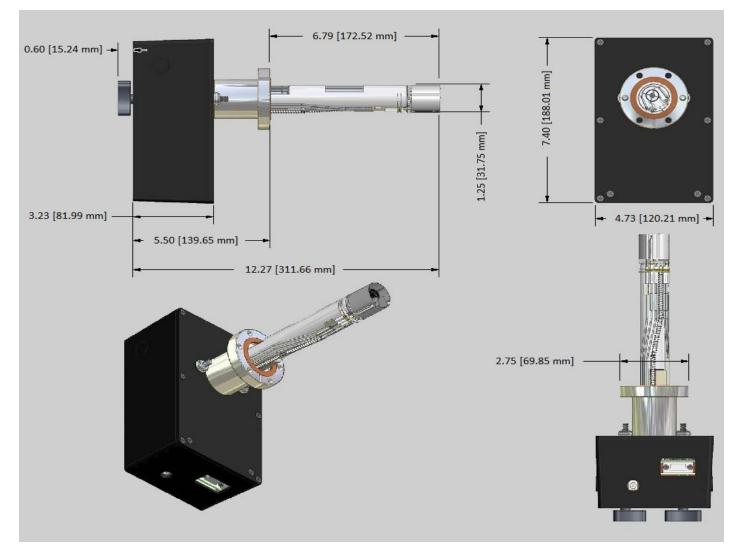
Record Data Tab

File Edit Format View Help		
$\begin{array}{c} 2015 / 09 / 08 & 10:22:08, 287, \\ 2015 / 09 / 08 & 10:22:08, 293, \\ 2015 / 09 / 08 & 10:22:08, 300, \\ 2015 / 09 / 08 & 10:22:08, 307, \\ 2015 / 09 / 08 & 10:22:08, 321, \\ 2015 / 09 / 08 & 10:22:08, 321, \\ 2015 / 09 / 08 & 10:22:08, 322, \\ 2015 / 09 / 08 & 10:22:08, 332, \\ 2015 / 09 / 08 & 10:22:08, 332, \\ 2015 / 09 / 08 & 10:22:08, 335, \\ 2015 / 09 / 08 & 10:22:08, 336, \\ 2015 / 09 / 08 & 10:22:08, 356, \\ 2015 / 09 / 08 & 10:22:08, 363, \\ 2015 / 09 / 08 & 10:22:08, 363, \\ 2015 / 09 / 08 & 10:22:08, 363, \\ 2015 / 09 / 08 & 10:22:08, 363, \\ 2015 / 09 / 08 & 10:22:08, 363, \\ 2015 / 09 / 08 & 10:22:08, 384, \\ 2015 / 09 / 08 & 10:22:08, 484, \\ 2015 / 09 / 08 & 10:22:08, 442, \\ 2015 / 09 / 08 & 10:22:08, 442, \\ 2015 / 09 / 08 & 10:22:08, 443, \\ 2015 / 09 / 08 & 10:22:08, 443, \\ 2015 / 09 / 08 & 10:22:08, 443, \\ 2015 / 09 / 08 & 10:22:08, 443, \\ 2015 / 09 / 08 & 10:22:08, 443, \\ 2015 / 09 / 08 & 10:22:08, 443, \\ 2015 / 09 / 08 & 10:22:08, 443, \\ 2015 / 09 / 08 & 10:22:08, 443, \\ 2015 / 09 / 08 & 10:22:08, 443, \\ 2015 / 09 / 08 & 10:22:08, 443, \\ 2015 / 09 / 08 & 10:22:08, 443, \\ 2015 / 09 / 08 & 10:22:08, 443, \\ 2015 / 09 / 08 & 10:22:08, 443, \\ 2015 / 09 / 08 & 10:22:08, 443, \\ 2015 / 09 / 08 & 10:22:08, 443, \\ 2015 / 09 / 08 & 10:22:08, 446, \\$	$\begin{array}{c} 0.600. \ 4.\ 0618e-010. \\ 0.700. \ 1.\ 5941e-009. \\ 0.800. \ 1.\ 5941e-009. \\ 0.900. \ 1.\ 9016e-009. \\ 1.001. \ 2.2126e-009. \\ 1.100. \ 2.2126e-009. \\ 1.200. \ 1.\ 9734e-009. \\ 1.200. \ 1.\ 9734e-009. \\ 1.300. \ 1.\ 3871e-001. \\ 1.400. \ 4.\ 9271e-010. \\ 1.600. \ 4.\ 9271e-010. \\ 1.600. \ 1.\ 324e-009. \\ 1.600. \ 1.\ 324e-009. \\ 1.600. \ 1.\ 324e-009. \\ 1.800. \ 1.\ 324e-009. \\ 2.100. \ 1.\ 3041e-009. \\ 2.200. \ 1.\ 678e-009. \\ 2.100. \ 1.\ 3041e-009. \\ 2.200. \ 1.\ 678e-009. \\ 2.200. \ 1.\ 2368e-010. \\ 2.500. \ 1.\ 2368e-010. \\ 2.500. \ 1.\ 908e-011. \\ 2.600. \ 1.\ 7909e-011. \\ 2.700. \ 2.\ 268e-011. \\ 2.900. \ 2.\ 1729e-011. \\ 3.000. \ -5.\ 2858e-011. \\ 3.000. \ -5.\ 2858e-011. \\ 3.100. \ 1.\ 1067e-011. \\ \end{array}$	
* III.		F

CSV File Date, Time, Mass Number, Intensity

Output Tab

Performance and Value


Diagnostic Outputs

shorted probe.

The Extorr XT Series RGA it is the only vacuum gauge you will ever need. The combination of flexibility and competitive price make Extorr an outstanding vacuum measurement value.

Dimensions

RGA Dimensional Drawing, Inches [mm]

Specifications

1 A A A A A A A A A A A A A A A A A A A				
Mass range		Ionizer Design	Open ion source,	
XT100	1 to 100 amu Faraday cup (FC)	Filament	electron impact ionization Dual thoria coated iridium with firmware protection. Built-in 1 to 30W degas ramp-up.	
			Field replaceable.	
XT200	1 to 200 amu Faraday cup (FC)	Electron energy	11 to 150V, programmable	
XT300 XT100M	1 to 300 amu Faraday cup (FC) 1 to 100 amu Faraday cup (FC)	Ion energy Focus Voltage	1 to 12V, programmable 0 to 150V, programmable	
X110014	and Electron Multiplier (EM)	Tocus voltage		
XT200M	1 to 200 amu Faraday cup (FC)	Electron emission	0.1 to 4 mA,	
	and Electron Multiplier (EM)	current	programmable	
XT300M	1 to 300 amu Faraday cup (FC)	Probe Dimensions	6.8" from flange face to	
Mass filter type	and Electron Multiplier (EM) Quadrupole	Mounting floores	top of ionizer 2.75" CF (CF35)	
Detector type	Faraday cup (FC), Standard	Mounting flange Minimum tube I.D.	1.375″	
Detector type	Electron Multiplier (EM), Optional	Finite and the fib.	1.575	
Resolution	Better than 0.5 amu @ 10%	CCU Dimensions	3.3" x 4.8" x 7.4", Easily	
	peak height. Adjustable to		separated from probe for	
	constant peak width throughout the mass range.		bakeout.	
Sensitivity	5×10^{-4} into Faraday cup.	CCU Extension	6.2" from flange face with	
(A/Torr)	Measured with N_2 @ 28 amu		mounting hardware.	
	with 1 amu full peak width,			
	10% height, 70 eV electron energy, 6 eV ion energy and 2			
	mA electron emission.			
Minimum	5 x 10 ⁻¹² Torr Faraday cup, 5 x	Warm-up time	Mass stability ± 0.1 amu	
detectable partial	10 ⁻¹⁴ Torr Electron multiplier		after 30 minutes.	
pressure	Measured with N ₂ @ 28 amu with 1 amu full peak width,			
	10% height, 70eV electron			
	energy, 6 eV ion energy, and 2			
A 1	mA electron emission.			
Operating range	UHV to Atmosphere Pirani gauge, 10 ⁻³ Torr to ATM	PC requirement	PC running Windows 2000, XP, 7, 8, or 10 with 1024 x	
	Ion Gauge below 10 ⁻² Torr		768 VGA graphics,	
	RGA operation below 10 ⁻⁴ Torr		keyboard, mouse, CD ROM	
			Drive, and 1 Unused USB	
Operating	50 °C Electronics,	Computer	or RS-232C Port. RS-232C, up to 115,200	
temperature	100 °C Probe	Interface	baud, or USB	
Bakeout	300 °C (Probe only, CCU	Software	Included VacuumPlus	
temperature	removed)		Windows based	
			Application. Requires Windows 2000, XP, 7, 8,	
			or 10	
Total Pressure	10 ⁻³ Torr to ATM, Pirani gauge	Power	24 VDC @ 2.5 Amps.	
Measurement	2×10^{-10} Torr to 10^{-2} Torr, B/A	requirement	120/240 VAC adaptor	
Probe Materials	type Ion Gauge SS304, Kovar, Tungsten,	Weight	included. 5 lbs. Total, Probe and	
	Alumina, Iridium, Copper,	W CIGHL	CCU.	
	Nickel, Thoria, Platinum			